critdd package
Subpackages
Submodules
critdd.diagram module
A module for assembling critical difference diagrams.
- class critdd.diagram.AbstractDiagram
Bases:
ABC
Abstract base class for critical difference diagrams in Tikz.
- to_file(path, *args, **kwargs)
Store this diagram in a file.
Note
Storing Tikz code in a “.png” file or “.svg” file is not yet supported.
- Parameters:
path – The file path where this diagram is to be stored. Has to be ending on “.tex”, “.tikz”, “.pdf”, “.png”, or “.svg”.
*args (optional) – See
to_str
.**kwargs (optional) – See
to_str
.
- abstract to_str(alpha=0.05, adjustment='holm', **kwargs)
Get a
str
object with the Tikz code for this diagram.- Parameters:
alpha (optional) – The threshold for rejecting a p value. Defaults to 0.05.
adjustment (optional) – The multiple testing adjustment. Defaults to “holm”. Another possible value is “bonferroni”.
reverse_x (optional) – Whether to reverse the x direction. Defaults to False.
as_document (optional) – Whether to include a
\documentclass
and adocument
environment. Defaults to False.tikzpicture_options (optional) – A
dict
with options for thetikzpicture
environment.axis_options (optional) – A
dict
with options for theaxis
environment.preamble (optional) – A
str
with LaTeX commands. Only used ifas_document==True
. Defaults to None.
- Returns:
A
str
object with the Tikz code for this diagram.
- class critdd.diagram.Diagram(X, *, treatment_names=None, maximize_outcome=False)
Bases:
AbstractDiagram
A regular critical difference diagram.
- Parameters:
X – An
(n, k)
-shaped matrix of observations, wheren
is the number of observations andk
is the number of treatments.treatment_names (optional) – The names of the
k
treatments. Defaults to None.maximize_outcome (optional) – Whether the ranks represent a maximization (True) or a minimization (False) of the outcome. Defaults to False.
- property average_ranks
- get_groups(alpha=0.05, adjustment='holm', return_names=False, return_singletons=True)
Get the groups of indistinguishable treatments.
- Parameters:
alpha (optional) – The threshold for rejecting a p value. Defaults to 0.05.
adjustment (optional) – The multiple testing adjustment. Defaults to “holm”. Another possible value is “bonferroni”.
return_names (optional) – Whether to represent the treatments in the groups by their names (True) or by their indices (False). Defaults to False.
return_singletons (optional) – Whether to return groups with single elements. Defaults to True.
- Returns:
A list of statistically indistinguishable groups.
- property maximize_outcome
- to_str(alpha=0.05, adjustment='holm', **kwargs)
Get a
str
object with the Tikz code for this diagram.- Parameters:
alpha (optional) – The threshold for rejecting a p value. Defaults to 0.05.
adjustment (optional) – The multiple testing adjustment. Defaults to “holm”. Another possible value is “bonferroni”.
reverse_x (optional) – Whether to reverse the x direction. Defaults to False.
as_document (optional) – Whether to include a
\documentclass
and adocument
environment. Defaults to False.tikzpicture_options (optional) – A
dict
with options for thetikzpicture
environment.axis_options (optional) – A
dict
with options for theaxis
environment.preamble (optional) – A
str
with LaTeX commands. Only used ifas_document==True
. Defaults to None.
- Returns:
A
str
object with the Tikz code for this diagram.
- class critdd.diagram.Diagrams(Xs, *, diagram_names=None, treatment_names=None, maximize_outcome=False)
Bases:
AbstractDiagram
A sequence of critical difference diagrams, plotted on a single 2-dimensional axis.
- Parameters:
Xs – Observations, given either as a list of length
m
of(n, k)
-shaped matrices or as an(m, n, k)
-shaped tensor, wherem
is the number of diagrams,n
is the number of observations, andk
is the number of treatments.diagram_names (optional) – The names of the
m
diagrams. Defaults to None.treatment_names (optional) – The names of the
k
treatments. Defaults to None.maximize_outcome (optional) – Whether the ranks represent a maximization (True) or a minimization (False) of the outcome. Defaults to False.
- property maximize_outcome
- to_str(alpha=0.05, adjustment='holm', **kwargs)
Get a
str
object with the Tikz code for this diagram.- Parameters:
alpha (optional) – The threshold for rejecting a p value. Defaults to 0.05.
adjustment (optional) – The multiple testing adjustment. Defaults to “holm”. Another possible value is “bonferroni”.
reverse_x (optional) – Whether to reverse the x direction. Defaults to False.
as_document (optional) – Whether to include a
\documentclass
and adocument
environment. Defaults to False.tikzpicture_options (optional) – A
dict
with options for thetikzpicture
environment.axis_options (optional) – A
dict
with options for theaxis
environment.preamble (optional) – A
str
with LaTeX commands. Only used ifas_document==True
. Defaults to None.
- Returns:
A
str
object with the Tikz code for this diagram.
- property treatment_names
critdd.stats module
A module for Friedman hypothesis tests.
These hypothesis tests are implemented in analogy to the hypothesis tests that are implemented in scipy.stats
.
- class critdd.stats.ChiSquareFriedmanResult(pvalue, statistic, n_df, average_ranks, n, maximize_outcome)
Bases:
tuple
- property average_ranks
- property maximize_outcome
- property n
- property n_df
- property pvalue
- property statistic
- class critdd.stats.FDistributedFriedmanResult(pvalue, statistic, chi_square_result, n_df_1, n_df_2)
Bases:
tuple
- property chi_square_result
- property n_df_1
- property n_df_2
- property pvalue
- property statistic
- critdd.stats.adjust_pairwise_tests(P, adjustment)
- critdd.stats.chi_square_distributed(X, *, maximize_outcome=False)
This version of the Friedman test uses a Chi-square-distributed test statistic.
- critdd.stats.f_distributed(X, *, maximize_outcome=False)
This version of the Friedman test uses an F-distributed test statistic.
- critdd.stats.friedman(X, *, maximize_outcome=False)
Calculate the Friedman hypothesis test.
The Friedman test tests the null hypothesis that
n
observations have the same distribution across allk
treatments. This version of the test uses an F-distributed test statistic.- Parameters:
X – An
(n, k)
-shaped matrix of observations.maximize_outcome – Whether the ranks represent a maximization (True) or a minimization (False) of the outcome. Defaults to False.
- Returns:
An
FDistributedFriedmanResult
with propertiespvalue
(the p value),statistic
(the test statistic),chi_square_result
(aChiSquareFriedmanResult
),n_df_1
(first number of degrees of freedom), andn_df_2
(second number of degrees of freedom). Thechi_square_result
has additional propertiesaverage_ranks
(the average ranks of the treatments),n
(the number of observations), andmaximize_outcome
.- Return type:
r
- critdd.stats.pairwise_tests(X)
critdd.tikz module
A module for the Tikz export.
- exception critdd.tikz.ExportException(path)
Bases:
Exception
- critdd.tikz.requires_document(path)
Determine whether an export requires as_document=True.
- critdd.tikz.to_file(path, tikz_code)
Export the tikz_code to a file.
- critdd.tikz.to_str(average_ranks, groups, treatment_names, *, reverse_x=False, as_document=False, tikzpicture_options={}, axis_options={}, preamble=None, title=None)
Return a string with Tikz code.
critdd.tikz_2d module
A module for the Tikz export of 2-dimensional axes.
- critdd.tikz_2d.to_str(average_ranks, groups, treatment_names, diagram_names, *, reverse_x=False, as_document=False, tikzpicture_options={}, axis_options={}, preamble=None)
Return a string with Tikz code.
Module contents
critdd: critical difference diagrams with Python and Tikz.